Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bin Wu* and Guocheng Wang

Department of Applied Chemistry, Zhejiang University of Sciences, Hangzhou 310018, People's Republic of China

Correspondence e-mail:
chemdpwu@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=263 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.033$
$w R$ factor $=0.079$
Data-to-parameter ratio $=15.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Tetra- μ-methacrylato- $\kappa^{8} O: O^{\prime}$-bis $[($ pyridine- $\kappa N)$ copper(II)]

In the title carboxylate-bridged binuclear copper complex, $\left[\mathrm{Cu}_{2}\left\{\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{COO}\right\}_{4}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]$, the Cu atoms are bridged by four bidentate methacrylate groups. The asymmetric unit consists of two half-molecules, each molecule having inversion symmetry. The $\mathrm{Cu} \cdots \mathrm{Cu}$ separations are 2.6181 (8) and 2.6442 (10) A. All bond lengths and angles are normal.

Comment

Copper complexes with organic acids and other donor ligands exist extensively in living things, playing an important role in a vast range of chemical and biochemical catalytic systems (King, 1994). Numerous papers dealing with copper carboxylate complexes have been published (Du et al., 2004; Hu et al., 2004; Li \& Xiao, 2004). We present here a new binuclear copper α-methacrylate complex with pyridine, (I).

(I)

The crystal structure of (I) contains two independent binuclear cage complexes, each with inversion symmetry. In each dimer, two Cu atoms are bridged by four $\mu_{2}-O: O^{\prime} \alpha-$ methacrylate groups, forming a cage structure, and the pyridine ligands are bonded through their N atoms to the Cu atoms in the terminal positions (Fig. 1). All bond lengths and angles in (I) are normal (Table 1). The coordination geometry of each Cu atom is distorted square-based pyramidal. Atom Cu 1 is displaced by 0.1960 (19) \AA out of the mean plane of atoms $\mathrm{O} 1, \mathrm{O} 2^{\mathrm{i}}, \mathrm{O} 3$ and $\mathrm{O} 4^{\mathrm{i}}$ towards the axial pyridine ligand (symmetry codes as in Table 1). Atom Cu 2 is displaced by 0.2082 (19) A out of the mean plane of atoms O5, O6 ${ }^{\text {ii }}, \mathrm{O} 7$ and O^{ii} towards the axial pyridine ligand. The $\mathrm{Cu} 1 \cdots \mathrm{Cu} 1^{\mathrm{i}}$ and $\mathrm{Cu} 2 \cdots \mathrm{Cu} 2^{\text {ii }}$ separations are 2.6181 (8) and 2.6442 (10) \AA, respectively.

Experimental

$\mathrm{H} L(\alpha$-methylacrylic acid; $0.5 \mathrm{ml}, 6.0 \mathrm{mmol})$ and $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ ($240 \mathrm{mg}, 1.0 \mathrm{mmol}$) were dissolved in $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml})$, and the pH

View of the title molecule showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30\% probability level. All H atoms have been omitted for clarity. [Symmetry codes are as in Table 1.]

Table 1
Selected geometric parameters ($\AA^{\circ},{ }^{\circ}$).

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.9735(19)$	$\mathrm{Cu} 2-\mathrm{O} 5$	$1.9757(19)$
$\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$	$1.9875(19)$	$\mathrm{Cu} 2-\mathrm{O} 6^{\mathrm{ii}}$	$1.9710(19)$
$\mathrm{Cu} 1-\mathrm{O} 3$	$1.9672(18)$	$\mathrm{Cu} 2-\mathrm{O} 7$	$1.9784(18)$
$\mathrm{Cu} 1-\mathrm{O} 4^{\mathrm{i}}$	$1.9794(18)$	$\mathrm{Cu} 2-\mathrm{O} 8^{\mathrm{ii}}$	$1.9717(19)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$2.147(2)$	$\mathrm{Cu} 2-\mathrm{N} 2$	$2.165(2)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$	$168.63(8)$	$\mathrm{O} 5-\mathrm{Cu} 2-\mathrm{O} 7$	$89.42(9)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 3$	$87.96(8)$	$\mathrm{O} 5-\mathrm{Cu} 2-\mathrm{N} 2$	$91.80(8)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 4^{\mathrm{i}}$	$89.68(8)$	$\mathrm{O}^{\mathrm{ii}}-\mathrm{Cu} 2-\mathrm{O} 5$	$167.97(8)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$101.92(8)$	$\mathrm{O}^{\mathrm{ii}}-\mathrm{Cu} 2-\mathrm{O} 7$	$88.84(8)$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1$	$89.42(8)$	$\mathrm{O}^{\mathrm{ii}}-\mathrm{Cu} 2-\mathrm{N} 2$	$100.23(8)$
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$	$91.55(8)$	$\mathrm{O}^{2}-\mathrm{Cu} 2-\mathrm{N} 2$	$97.60(8)$
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 4^{\mathrm{i}}$	$168.53(8)$	$\mathrm{O}^{\mathrm{ii}}-\mathrm{Cu} 2-\mathrm{O} 5$	$89.88(9)$
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{N} 1$	$97.32(8)$	$\mathrm{O}^{\mathrm{ii}}-\mathrm{Cu} 2-\mathrm{O} 6^{\mathrm{ii}}$	$89.31(9)$
$\mathrm{O} 4{ }^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$	$88.55(8)$	$\mathrm{O}^{\mathrm{ii}}-\mathrm{Cu} 2-\mathrm{O} 7$	$167.79(7)$
$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1$	$94.15(8)$	$\mathrm{O}^{\mathrm{ii}}-\mathrm{Cu} 2-\mathrm{N} 2$	$94.61(8)$

Symmetry codes: (i) $1-x, 2-y, 1-z$; (ii) $1-x, 1-y,-z$.

All H atoms were initially located in a difference Fourier map. All methyl H atoms were then constrained to an ideal geometry, with $\mathrm{C}-$ H distances of $0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$, but each group was allowed to rotate freely about its $\mathrm{C}-\mathrm{C}$ bond. The $=\mathrm{CH}_{2} \mathrm{H}$ atoms and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

References

Du, M., Cai, H. \& Zhao, X.-J. (2004). Acta Cryst. E60, m1139-m1141.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Hu, R.-Z., Liu, Z.-D., Tan, M.-Y. \& Zhu, H.-L. (2004). Acta Cryst. E60, m946m947.
King, R. B. (1994). Encyclopedia of Inorganic Chemistry, pp. 829-869. New York: John Wiley and Sons Ltd.
Li, X. H. \& Xiao, H. P. (2004). Acta Cryst. E60, m898-m900.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

